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This paper carries out bifurcation analysis of the generalized resonant dispersive nonlinear Schrödinger’s  equation. This 
lead to the retrieval of bright 1-soliton solution to the model equation along with singular periodic solutions. There are 
constraint conditions in place that guarantees existence of the soliton.  
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1. Introduction 
 

Optical solitons is a growing and fascinating area of 

research in the area of Physics and Engineering. The 

dynamics of soliton molecules has the marvelous 

capacity of carrying loads of information across the 

globe in a matter of a few femtoseconds. The commonly 

studied model in this context is the nonlinear 

Schrödinger’s equation (NLSE) [1-15]. There are several 

issues with soliton transmission, across trans-continental 

and trans-oceanic distances, based on this model.  

Therefore generalized model is proposed that is 

frequently studied as opposed to the regular NLSE. 

There are bends, kinks and other aspects that leads to the 

departure of the model from regular NLSE that compels 

the study of solitons with a model that carries 

generalized flavor [1, 2, 10-12]. This model is the 

generalized dispersive NLSE. To top it off, the model in 

this paper includes quantum or Bohm potential (also 

known as resonant term) that appears in the context of 

chiral solitons in quantum Hall effect which is also seen 

in the context of Madelung fluid in quantum mechanics. 

This model is thus being referred to as generalized 

resonant dispersive NLSE (GRD-NLSE). Bifurcation 

analysis will be carried out for this model that will lead 

to soliton solutions as well as singular periodic solutions. 

 

 

2. Mathematical model 
 

The model equation that will be studied in this 

paper is given by the GRD-NLSE and it is: [1, 2, 4, 5] 
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For this model, ),( tx  is the wave profile and 

represents the complex valued function. The first term is the 

nonlinear temporal evolution, while a  and b  respectively 

represent the coefficients of the generalized group velocity 

dispersion (GVD) and power law nonlinearity. Then c  

represent the coefficient of the resonant term. The parameter 

m  represents power law nonlinearity. When 2m , this 

model equation condenses to Kerr law nonlinearity that is 

also referred to cubic NLSE. Finally, the parameter n 

dictates the generalized evolution and generalized GVD. For 

1n , this model collapses to the regular NLSE. This 

parameter n  thus maintains the evolution and GVD on a 

generalized setting. 

Bifurcation analysis for this model that will lead to the 

corresponding dynamical system with the possible fixed 

points. The integration of this model will subsequently 

follow from the analysis that will lead to a bright 1-soliton 

solution to GRD-NLSE. The constraint conditions will 

naturally emerge from the analysis, for the existence of the 

bright soliton solution.  
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3. Phase portraits and qualitative analysis 
 

We assume that the traveling wave solutions of Eq. 

(1) is of the form [7, 8]  

 
),()(),( txieUtx                           (2) 

 

where )(U  represents the shape of the pulse and 
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txtx   ),(                      (4) 

 

In Eq. (2), the function ),( tx  is the phase 

component of the soliton. Then, in Eq. (4),   is the 

soliton frequency, while   is the wave number of the 

soliton. Finally in Eq. (3), 0  is the velocity of the 

soliton. By replacing Eq. (2) into Eq. (1) and separating 

the real and imaginary parts of the result, we have  
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and  
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Now, we use the transformation 
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that will reduce Eq. (6) into the ODE 
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To facilitate discussions, we let 
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Letting z , then we get the following planar 

system: 
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Obviously, the above system (10) is a Hamiltonian 

system with Hamiltonian function 
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In order to investigate the phase portrait of (10), set 
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Obviously, when 0 , )(f  has three zero 

points,  , 0  and  , which are given as follows: 
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When 0 , )(f  has only one zero point 

 

00                                        (14) 

 

Letting )0,( l  be one of the singular points of system 

(10), then the characteristic values of the linearized system 

of system (10) at the singular points )0,( l  are 
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From the qualitative theory of dynamical systems, we 

know the following. 

(I) If 0)( 
lf  , )0,( l   is a saddle point. 

(II) If 0)( 
lf  , )0,( l   is a center point. 

(III) If 0)( 
lf  , )0,( l  is a degenerate saddle 

point.  
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Therefore, we obtain the bifurcation phase portraits 

of system (10) in the figure. 

 

hzH ),(                            (16) 

 

where h  is Hamiltonian. 

Next, we consider the relations between the orbits 

of (10) and the Hamiltonian h . Set 
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According to Fig. 1, we get the following 

propositions [5,6,7].  

Proposition 1. Suppose that 0  and 0 ,  

one has the following. 

(I) When *hh  , system (10) does not have any 

closed orbits.  

(II) When 0*  hh , system (10) has two 

periodic orbits 1   and 2 . 

(III) When 0h , system (10) has two homoclinic 

orbits 3   and 4 . 

(IV) When 0h ,  system (10) has a periodic orbit 

5 . 

Proposition 2. Suppose that 0  and 0 , 

one has the following. 

(I) When 0h  and *hh  , system (10) does not 

have any closed orbits.  

(II) When *0 hh  , system (10) has three 

periodic orbits 6 ,  7  and 8 .  

(III) When 0h ,  system (10) has two periodic 

orbits 9   and 10 .  

(IV) When *hh  , system (10) has two 

heteroclinic orbits 11  and 12 .  

Proposition 3. (I) When 0 , 0 , and 

0h , system (10) has a periodic orbits.  

(II) When 0 , 0 , system (10) does have 

not any closed orbits.  

 

 
Fig. 1.  The bifurcation phase portraits of system (11). 

(I)     0 ,    0 ,    (II) 0 ,  0 ,   (III)  

              0 , 0 , (IV) 0 , 0 .  

From the qualitative theory of dynamical systems, we 

know that a smooth solitary wave solution of a partial 

differential system corresponds to a smooth homoclinic orbit 

of a traveling wave equation. A smooth kink wave solution 

or a unbounded wave solution corresponds to a smooth 

heteroclinic orbit of a traveling wave equation.  Similarly, a 

periodic orbit of a traveling wave equation corresponds to a 

periodic traveling wave solution of a partial differential 

system. According to the above analysis, we have the 

following propositions. 

Proposition 4. If 0  and 0 , one has the 

following.  

(I) When 0*  hh , Eq.  (1) has two periodic 

wave solutions (corresponding to the periodic orbits 1   and 

2  in Figure 1.)   

(II) When 0h , Eq. (1) has two solitary wave 

solutions (corresponding to the homoclinic orbits 3   and 

4  in Fig. 1) 

(III) When 0h , Eq. (1) has two periodic wave 

solutions (corresponding to the periodic orbit 5  in Figure 

1.)  

Proposition 5. If 0  and 0 ,  one has the 

following.  

(I) When *0 hh  ,  Eq. (1) has two periodic wave 

solutions (corresponding to the periodic orbit 7  in Fig. 1) 

and two periodic blow-up wave solutions (corresponding to 

the periodic orbits 6  and 8  in Figure 1). 

(II) When 0h ,  Eq. (1) has periodic blow-up wave 

solutions (corresponding to the periodic orbits 9  and 10  

in Fig. 1). 

(III) When *hh  ,  Eq.  (1) has two kink profile 

solitary wave solutions.  (corresponding to the heteroclinic 

orbits 11  and 12   in Fig. 1).  

 

 

4. Exact traveling wave solutions 
 

Firstly, we will obtain the explicit expressions of 

traveling wave solutions for Eq. (1) when 0  and 

0 . From the phase portrait, we see that there are two 

symmetric homoclinic orbits 3  and 4  connected at the 

saddle point )0,0( . In ),( z -plane the expressions of the 

homoclinic orbits are given as 
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Substituting (18) into zdd   and integrating 

them along the orbits 3  and 4 , we have  
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The above integrals give  
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Noting (2), (5), (7) and (9), we get the following 

solitary wave solutions: 
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Secondly, we will obtain the explicit expressions of 

traveling wave solutions for Eq. (1) when 0 and 0 . 

From the phase portrait, we note that there are two special 

orbits 9  and 10 , which have the same Hamiltonian with 

that of the center point )0,0( . In ),( z -plane the 

expressions of the orbits are given as 
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Substituting (22) into zdd   and integrating 

them along the orbits 9  and 10 , we have  
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Completing the above integrals we obtain 
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Noting (2), (5), (7) and (9), we get the following 

periodic blow-up wave solutions: 
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and  
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5. Conclusions 

 

This paper secured bright 1-soliton solution to 

GRD-NLSE that stands as a generalized model to NLSE. 

Bifurcation analysis was carried out to secure this 

solution. There are constraint conditions that guarantee 

the existence of the soliton solution. The results of this 

paper stand on a very strong footing. Later, this equation 

will be extended to perturbation terms where these 

perturbations will also be studied with a generalized 

flavor. The results of those analysis will be revealed 

later. Additionally, the model will be studied with time-

dependent coefficients that will lead to much improved 

results that is a much closer to realistic situation. This is 

just a tip of the iceberg. 
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